
1. Introduction
The satellite record of sea level change is now of sufficient length that we can begin to detect climate-driven 
signals in global mean sea level (GMSL) change (e.g., Nerem et al., 2018). Beginning with the launch of TOPEX/
Poseidon in 1992, the observations have been continued with Jason-1 (2001), Jason-2 (2008), Jason-3 (2016), and 
Sentinel-6 (2020; Abdalla et al., 2021). Remarkably, the time series has been uninterrupted, and now this critical 
climate data record is 28 years in length (Figure 1). Climate-driven signals are also beginning to emerge in the 
observed regional sea level trends (Fasullo et al., 2020; Fasullo & Nerem, 2018; Hamlington et al., 2019), but it 
is still difficult to empirically model regional sea level changes (Hamlington, Frederikse, et al., 2020). Averaging 
regional sea level to give GMSL reduces the influence of regional sea level variability and gives a clearer picture 
of the climate-driven changes.

Satellite altimeter measurements give us insight into how sea level has changed over the last 3 decades, but deter-
mining how to use this information to inform future sea level change is a difficult task. One approach would be to 
use the observed sea level changes to improve climate models and their projections, but climate models are only 
beginning to be coupled to ice sheet models, one of the major contributors to future sea level change, and so they 
are limited in their ability to incorporate observed sea level change. Another approach is to use semi-empirical 
models, which combine observed sea level and surface temperature change with climate model projections (e.g., 
Moore et al., 2013), but the satellite record is too short of a training period for this method. Here we demonstrate 
a purely empirical approach using a simple mathematical model of the observed changes, and then assume that 
sea level changes similarly in the future. Over periods of a few decades, this approach has the advantage that it is 
simple to implement and modeling the uncertainty is reasonably straightforward. This approach is also independ-
ent of climate models, so it provides a useful comparison to those projections.

Abstract We estimate a quadratic model of climate-driven global mean sea level (GMSL) change based 
on the satellite altimetry record (1993–2020), including a rigorous assessment of the errors in the quadratic 
coefficients. We then extrapolate this model 30 years into the future to 2050 and compute the 90% confidence 
interval. We find GMSL rise in 2050 relative to 2020 will be 16.4 cm higher, with an uncertainty range of 
11.3–21.4 cm. This prediction agrees within uncertainties with IPCC SROCC and AR6 sea level projections. 
In addition, a hindcast extrapolation prior to 1993 agrees well with the tide gauge record of GMSL change 
over the 2nd half of the 20th century. We believe this shows the value of short-term observationally driven 
extrapolations as an additional tool for predicting future sea level change.

Plain Language Summary The satellite altimetry record of global mean sea level (GMSL) change 
(1993–2020) is now of sufficient length that we can begin to average through some of the natural variability 
and detect the climate-driven changes. If we model these changes using simple rate (mm/year) and acceleration 
(mm/year 2) terms, we can extrapolate the rate and acceleration into the future to predict future sea level change. 
This assumes that the rate and acceleration terms remain constant in the future, which probably provides 
a conservative assessment of future sea level change. We find extrapolated GMSL rise in 2050 relative to 
2020 will be 16.4 cm higher, with a 90% uncertainty range of 11.3–21.4 cm. These numbers agree well with 
projections from climate models. In addition, when the rate and accelerations are extrapolated backward to 
1960, we find good agreement with the tide gauge record of GMSL change.
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Key Points:
•  The satellite record of global mean 

sea level change is quadratically 
extrapolated 30 years into the future

•  This extrapolation agrees well with 
various IPCC model projections, as 
well as with 20th century tide gauge 
measurements in hindcast

•  This extrapolation provides another 
observationally driven tool to assess 
ongoing and future sea level change
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The observation-driven predictions are unlikely to be effective beyond a few decades, but the need for near-term 
assessments is high, and observations can be especially useful in assessing sea-level rise on these shorter times-
cales. As a result of the sea-level rise that has taken place both during and before the altimeter record, coastal 
impacts have increased in frequency and severity in recent years (see Oppenheimer et al., 2019 for summary), 
and will likely continue to increase in the next couple of decades (e.g., Thompson et al., 2021; Sweet et al., 2022) 
Planning decisions are also increasingly being made on these shorter time horizons. For real estate investment 
and the typical lifetime of buildings and infrastructure in coastal areas, a 30 year planning horizon has a particular 
relevance. Additionally, flexible adaptation pathways and solutions typically require significant lead-times on 
upgrades or replacements of coastal structures that lead to an emphasis on shorter planning horizons (Bloeman 
et al., 2018; Hall et al., 2019; Werner et al., 2021). Assessing the current and near-term trajectory of sea level rise 
is both informative for the period beyond 2050 (e.g., Little et al., 2019) and necessary for informing adaptation 
efforts (e.g., Haasnoot et al., 2013; Ranger et al., 2013).

Figure 1. Global mean sea level observations (Beckley et al., 2017) and estimated errors (Ablain et al., 2019), fit with a 2nd 
order quadratic. (b) Same as (a), but showing the extrapolation of the quadratic to 2050 with 90% uncertainty bounds.
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The time series of GMSL is well-approximated by a quadratic plus interannual variability mainly associated with 
ENSO (Figure 1). Nerem et al. (2018) attempted to isolate the climate-driven rate and acceleration of GMSL. 
Here we update those results and focus on extrapolating this quadratic sea level model to predict future sea level 
change in 2050.

2. Estimates of the Rate and Acceleration of GMSL
Estimates of the rate of GMSL change from satellite altimetry have been made for many years, but only recently 
has it become possible to reliably estimate the climate-driven acceleration of GMSL with sufficient confidence 
(e.g., Ablain et al., 2019; Nerem et al., 2018). Estimates of the acceleration as a function of the length of the time 
series have stabilized (Figure 2), suggesting that the impacts of interannual and decadal variability have lessened 
over a 28 year time series. Here we use updated 10-day GMSL estimates from Beckley et  al.  (2017), where 
seasonal variations have been removed and monthly averages computed.

A number of non-climate related factors can influence the acceleration of GMSL. Fasullo et al. (2016) showed 
that the eruption of Mount Pinatubo and the associated cooling effects of the aerosols injected into the stratosphere 
caused a deceleration of GMSL of about 0.017 mm/yr 2 over 1993–2020. We removed this effect using a model 
as described in Fasullo et al. (2016). Removing these effects increases the climate-driven acceleration. In addi-
tion, the interannual ENSO impacts, due to both shifts in land/ocean precipitation and thermosteric changes, can 
influence the acceleration estimate (Boening et al., 2012; Hamlington, Piecuch, et al., 2020; Llovel et al., 2011; 
Moreira et al., 2021; Ngo-duc et al., 2005; Piecuch & Quinn, 2016). Here, we use an observation-driven and 
model-assessed ENSO correction derived by Hamlington, Piecuch, et  al.  (2020) to remove ENSO variability 
from the GMSL time series. The Pinatubo and ENSO-corrected GMSL variations are shown in Figure 1. The 

Figure 2. Acceleration coefficient versus the end date of the fit interval (start date is 1993.0). As the length of the time series 
gets longer, the acceleration coefficient becomes stable after 2017.
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correction for ENSO is directly related to the analysis done in Hamlington, Piecuch, et al. (2020). A regional 
pattern is generated using cyclostationary empirical orthogonal functions and then averaged globally to produce 
the GMSL correction. Uncertainty estimates are obtained through the model comparisons discussed in Hamling-
ton, Piecuch, et al. (2020). A regression of ENSO and PDO climate indices on GMSL along the lines of Zhang 
and Church (2012) would produce similar results although without a clear way of assessing the uncertainty. The 
ENSO correction does not capture all the variability, especially during strong La Nina events, but it still reduces 
the error in the quadratic fit.

Figure 2 shows estimates of the acceleration versus the length of the data record after removing the Pinatubo 
and ENSO corrections. The acceleration has been stable at around ∼0.08 mm/yr 2 since 2017. This suggests the 
impacts of interannual and decadal variability (not accounted for by our Pinatubo and ENSO corrections) are 
being sufficiently averaged in a 28 year time series for our purposes. After removing the Pinatubo and ENSO 
contributions, we obtain an average rate and acceleration of 3.3  mm/yr and 0.083  mm/yr 2 over 1993–2020. 
As discussed in Nerem et al. (2018), most of this acceleration is attributed to ice mass loss in Greenland and 
Antarctica.

3. Assessing the Errors in the Rate and Acceleration Estimates
There are a variety of errors that must be considered when evaluating the possible range of sea-level change in 
2050. We consider uncertainties due to measurement errors, Glacial Isostatic Adjustment (GIA), and serial corre-
lation. To account for all the different error sources, we generate a 100,000-member Monte-Carlo ensemble. For 
each ensemble member, we start with the GMSL curve from altimetry, and use all the error sources to perturb the 
GMSL curve. Next, we fit a quadratic to each ensemble member, and extrapolate this quadratic to 2050. Finally, 
we use the ensemble-mean and the 5th and 95th percentile as our projection mean and lower and upper bounds. 
The statistics of these calculations are shown in Figure 3.

First, there are the measurement errors in the altimetry. One approach is to compare altimeter-measured sea 
level to a set of global tide gauge sea level measurements and use the statistics of the differences to build an 
error model for altimeter-measured GMSL, as was done in Nerem et al. (2018). A second approach is to build an 
error model for the altimetry by modeling the errors in each of the potential error sources, which vary for each 
satellite mission (TOPEX, Jason-1, etc.). This is the approach implemented by Ablain et al. (2019) and tends to 
give a more conservative error estimate than the first approach. We use the second approach here, as described 
by Ablain et al. (2019), which includes uncertainties arising from high-frequency errors due to altimetry noise, 
geophysical corrections, orbit determination, wet troposphere corrections, gravity fields, inter-mission biases, 
large scale drifts due to reference frame uncertainties, and the instabilities in the TOPEX/Poseidon record. This 
approach gives an error in the measured acceleration (0.056 mm/yr 2 90% CI) about 36% higher than the first 
approach (0.041 mm/yr 2 90% CI). We assess the uncertainties of the quadratic fit to the altimeter record by taking 
both the measurement uncertainties and the autocorrelated residuals due to internal variability into account. 

Figure 3. Histograms of (a) the trend estimate, (b) the acceleration estimate, and (c) extrapolated sea level rise in 2050 relative to the mean over 1993–2020 using the 
Monte Carlo method to assess the errors as discussed in the text.
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For the former, we use the estimates of Ablain et  al.  (2019) and Caron 
et al. (2018) for the GIA. For the latter we use Bos et al. (2013). We generate 
a 100,000 member ensemble of perturbed estimates of the GMSL curve. 
These perturbations are created by generating auto-correlated random noise 
with the noise parameters for each included process as described in Ablain 
et al. (2019). We consider all the measurement error sources mentioned in 
Ablain et al. (2019), except for the GIA term, for which we use a different 
approach, described below.

Glacial Isostatic Adjustment causes a net subsidence of the global sea 
floor. If not accounted for, this subsidence leads to an underestimation of 
the GMSL rate from altimetry (Gregory et al., 2019; Tamisiea, 2011). The 
magnitude of this effect can be deduced from GIA models by computing the 

modeled geocentric sea-level change (which is equal to the sum of the predicted relative sea-level change and 
vertical land motion) and averaging this change over the global oceans. To account for this effect on our GMSL 
estimates and its uncertainty we use the relative sea-level and vertical deformation trends from the ensemble of 
GIA models from Caron et al. (2018). We compute the GIA correction term by adding the relative sea-level and 
solid-earth deformation terms and averaging this sum over the altimetry domain. For each ensemble member, we 
use a random realization of a 5,000-member subset from the GIA ensemble.

Finally, we have to account for the serial correlation in the GMSL time series. The GMSL time series exhibits 
clear interannual and decadal variability, even after removing the impact of ENSO and Pinatubo. Due to this 
variability, the uncertainties in the estimated quadratic coefficients will be larger than when the variability can 
be approximated as a white noise process (e.g., Bos et al., 2014; Royston et al., 2018). To account for this uncer-
tainty in the Monte-Carlo procedure, we estimate the noise parameters of the GMSL curve (after applying the 
corrections for ENSO and Pinatubo and removing a quadratic) under the assumption that the noise spectrum can 
be described by a Generalized Gauss-Markov process (Langbein, 2004). We then generate random noise using 
this spectrum and add that noise to the time series for each ensemble member. Both the estimation of the noise 
parameters and random noise generation has been performed with the Hector software (Bos et al., 2013).

4. Extrapolation of Observed GMSL Into the Future
Simple extrapolation of a quadratic model of past sea level change into the future assumes that the estimated rate 
and acceleration terms in the model are constant over the observation period and the period of the extrapolation. 
In a sense, we are extrapolating the trajectory of observed sea level change. Here, we extrapolate the rate and 
acceleration found from 28 years of altimeter data to 2050 and we use the estimated errors in these coefficients 
to establish a range for potential 2050 sea level rise (Figure 1 and Table 1). We do not extrapolate beyond 2050 
because the uncertainty in the extrapolations increases and exceeds the likely ranges across the SSP scenarios 
used in the IPCC AR6.

Figure 4 shows the results of the extrapolation backwards in time prior to 1993 compared to the tide gauge GMSL 
record. Although the errors on the extrapolation are large, the differences with the tide gauge record have a stand-
ard deviation of only 5 mm. Since our quadratic model performs well for the period 1960–1993, it can reasonably 
be expected to perform similarly for the next 30 years.

The process-based argument for using a quadratic model is as follows. The concentration of GHGs is increasing 
exponentially in the atmosphere (but perhaps more recently quadratically). The radiative forcing increases as the 
logarithm of the GHG concentration, so the Earth's radiation imbalance increases linearly (Kramer et al., 2021; 
Raghuraman et al., 2021). The heat accumulation is approximately the integral of the radiative forcing, thus result-
ing in a quadratic. Therefore, the ocean heat content contributions to sea level change should roughly increase 
quadratically. A similar argument can be made for the contributions of mountain glaciers, because they are line-
arly dependent on surface temperature (Edwards et al., 2021). Greenland and Antarctica are more complex. Only 
SMB in Greenland has been related to a quadratic (Noël et al., 2021). Antarctic SMB is projected to increase 
linearly as a function of surface temperature (Lenaerts et al., 2016). Discharge from Antarctica and Greenland 
is harder to predict, but we feel it is a reasonable assumption that discharge will continue on its same trajectory 
over the next 30 years. So, while other representations could be used, we prefer the quadratic model. Beyond this, 

Extrap
SSP5-

8.5
SSP2-

4.5
SSP1-

2.6
SROCC 
RCP 8.5

SROCC 
RCP 4.5

SROCC 
RCP 2.6

Low 11.3 14.1 11.0 10.2 13.5 10.8 9.5

Mid 16.4 18.2 15.5 14.0 18.3 14.7 13.4

High 21.4 27.9 24.4 22.9 23.4 18.9 17.4

Note. SSP projections are from Fox-Kemper et  al.  (2021) and SROCC 
projections are from Oppenheimer et al. (2019).

Table 1 
Global Mean Sea Level Change in 2050.0 Relative to 2020.0 (cm)
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the projections and associated pathways in the AR6 can be reasonably approximated by a quadratic model in the 
next 30 years. As an objective is to compare observation extrapolation to model-based projection, we also use this 
similarity as motivation for adopting a quadratic model. Lastly, the recent AR6 performed a similar altimeter-de-
rived GMSL extrapolation out to 2100 using a quadratic model (although without any of the uncertainty analysis 
performed in the present study).

5. Comparison to Climate Model Projections
The extrapolation of the altimetry record we have done here can be directly compared to climate model projec-
tions used in the IPCC Assessments. Table 1 and Figure 5 shows these comparisons for the year 2050 relative to 
2020. The range of the extrapolated model predictions is comparable to the climate model projections, suggesting 
that observationally based extrapolations have a role to play in understanding future sea level change. The extrap-
olation lies between RCP 4.5 and 8.5 for the SROCC projections and SSP2-RCP4.5 and SSP5-RCP8.5 for the 
AR6 projections, though statistically we cannot rule out any of the scenarios, similar to the results found by Wang 

Figure 4. Extrapolation of the quadratic fit back in time prior to the altimeter era as compared to the tide gauge record of 
global mean sea level change (Frederikse et al., 2020).

Figure 5. Comparison of the altimeter-derived global mean sea level extrapolation to the SROCC projections (Oppenheimer et al., 2019).
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et al. (2021). Our extrapolation is lower than one presented in the IPCC AR6 (Fox-Kemper et al., 2021) largely 
because of the ENSO correction we have applied.

6. Discussion
We have constructed a quadratic model of climate-driven GMSL change from the satellite altimetry record and 
assessed the errors in this model. We then used this model to extrapolate forward 30 years to estimate GMSL 
change in 2050 relative to 2020, finding a central value of 16.4 cm with a 90% confidence interval of 11.3–
21.4 cm. We found good agreement between these extrapolations and projections from climate models used by 
the IPCC assessments. In addition, we found reasonable agreement when extrapolating backward in time prior to 
the altimeter era and comparing to tide gauge estimates of GMSL over 1960–1993.

We chose not to extrapolate beyond 2050 in this work because the errors become large quickly and the assumption 
of stationarity in the model parameters (rate and acceleration) becomes more suspect. However, extrapolating 
to 2100 does still give reasonable agreement with the IPCC projections (which themselves closely follow a 
quadratic).

We believe the altimeter sea level record is now of sufficient length that short-term extrapolations over a few 
decades can be used as an additional tool when trying to assess ongoing and future GMSL change, in addition to 
the standard approaches based on climate models and semi-empirical methods. The next step will be to extend 
this type of method to regional sea level change when the observational record can support such work (Hamling-
ton, Frederikse, et al., 2020).

Data Availability Statement
The software and data from this study can be downloaded at https://doi.org/10.5281/zenodo.6265943.

References
Abdalla, S., Abdeh Kolahchi, A., Adusumilli, S., Aich Bhowmick, S., Alou-Font, E., Amarouche, L., et al. (2021). Altimetry for the future: 

Building on 25 years of progress. Advances in Space Research: The Official Journal of the Committee on Space Research, 68(2), 319–369. 
https://doi.org/10.1016/j.asr.2021.01.022

Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Cazenave, A., & Picot, N. (2019). Uncertainty in satellite estimate of global mean 
sea level changes, trend and acceleration. Earth system science data discussions. https://doi.org/10.5194/essd-2019-10

Beckley, B. D., Callahan, P. S., Hancock, D. W., III, Mitchum, G. T., & Ray, R. D. (2017). On the “Cal-Mode” correction to TOPEX satel-
lite altimetry and its effect on the global mean sea level time series: Topex CAL-MODE correction and sea level. Journal of Geophysical 
Research: Oceans, 122(11), 8371–8384. https://doi.org/10.1002/2017jc013090

Bloemen, P., Reeder, T., Zevenbergen, C., Rijke, J., & Kingsborough, A. (2018). Lessons learned from applying adaptation pathways in flood 
risk management and challenges for the further development of this approach. Mitigation and Adaptation Strategies for Global Change, 23(7), 
1083–1108. https://doi.org/10.1007/s11027-017-9773-9

Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S., & Fasullo, J. (2012). The 2011 La Niña: So strong, the oceans fell. Geophysical Research 
Letters, 39(19), L19602. https://doi.org/10.1029/2012gl053055

Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2013). Fast error analysis of continuous GNSS observations with missing data. 
Journal of Geodesy, 87(4), 351–360.

Bos, M. S., Williams, S. D. P., Araújo, I. B., & Bastos, L. (2014). The effect of temporal correlated noise on the sea level rate and acceleration 
uncertainty. Geophysical Journal International, 196(3), 1423–1430. https://doi.org/10.1093/gji/ggt481

Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., & Blewitt, G. (2018). GIA model statistics for GRACE hydrology, cryosphere, and 
ocean science. Geophysical Research Letters, 45(5), 2203–2212. https://doi.org/10.1002/2017gl076644

Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., et al. (2021). Projected land ice contributions to twenty-first-cen-
tury sea level rise. Nature, 593(7857), 74–82. https://doi.org/10.1038/s41586-021-03302-y

Fasullo, J. T., Gent, P. R., & Nerem, R. S. (2020). Forced patterns of sea level rise in the community earth system model large ensemble from 
1920 to 2100. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2019jc016030

Fasullo, J. T., & Nerem, R. S. (2018). Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the 
future. Proceedings of the National Academy of Sciences of the United States of America, 115(51), 12944–12949. https://doi.org/10.1073/
pnas.1813233115

Fasullo, J. T., Nerem, R. S., & Hamlington, B. (2016). Is the detection of accelerated sea level rise imminent? Scientific Reports, 6, 31245. https://
doi.org/10.1038/srep31245

Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., et al. (2021). Ocean, cryosphere and sea level 
change. In P. Zhai, et al. (Eds.), Climate change 2021: The physical 12 science basis. Contribution of working group I to the sixth assessment 
report of the intergovernmental 13 panel on climate change [Masson-Delmotte, V. Cambridge University Press. In Press.

Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., et al. (2020). The causes of sea-level rise since 1900. Nature, 
584(7821), 393–397. https://doi.org/10.1038/s41586-020-2591-3

Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., et al. (2019). Concepts and terminology for sea level: 
Mean, variability and change, both local and global. Surveys in Geophysics, 40, 1251–1289. https://doi.org/10.1007/s10712-019-09525-z

Acknowledgments
The research was carried out in part 
at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a 
contract with the National Aeronaut-
ics and Space Administration. This 
research was supported by the NASA 
Sea Level Change Team (N-SLCT) via 
grants 80NSSC20K1123 (RSN) and 
80NSSC17K0564 (TF and BDH). The 
authors acknowledge helpful discussions 
with Dr. John Fasullo.

https://doi.org/10.5281/zenodo.6265943
https://doi.org/10.1016/j.asr.2021.01.022
https://doi.org/10.5194/essd-2019-10
https://doi.org/10.1002/2017jc013090
https://doi.org/10.1007/s11027-017-9773-9
https://doi.org/10.1029/2012gl053055
https://doi.org/10.1093/gji/ggt481
https://doi.org/10.1002/2017gl076644
https://doi.org/10.1038/s41586-021-03302-y
https://doi.org/10.1029/2019jc016030
https://doi.org/10.1073/pnas.1813233115
https://doi.org/10.1073/pnas.1813233115
https://doi.org/10.1038/srep31245
https://doi.org/10.1038/srep31245
https://doi.org/10.1038/s41586-020-2591-3
https://doi.org/10.1007/s10712-019-09525-z


Earth’s Future

NEREM ET AL.

10.1029/2021EF002290

8 of 8

Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions 
for a deeply uncertain world. Global Environmental Change, 23(2), 485–498. https://doi.org/10.1016/j.gloenvcha.2012.12.006

Hall, J. W., Harvey, H., & Manning, L. J. (2019). Adaptation thresholds and pathways for tidal flood risk management in London. Climate Risk 
Management, 24, 42–58. https://doi.org/10.1016/j.crm.2019.04.001

Hamlington, B. D., Fasullo, J. T., Nerem, R. S., Kim, K., & Landerer, F. W. (2019). Uncovering the pattern of forced sea level rise in the satellite 
altimeter record. Geophysical Research Letters, 46(9), 4844–4853. https://doi.org/10.1029/2018gl081386

Hamlington, B. D., Frederikse, T., Nerem, R. S., Fasullo, J. T., & Adhikari, S. (2020). Investigating the acceleration of regional sea level rise 
during the satellite altimeter era. Geophysical Research Letters, 47(5). https://doi.org/10.1029/2019gl086528

Hamlington, B. D., Piecuch, C. G., Reager, J. T., Chandanpurkar, H., Frederikse, T., Nerem, R. S., et al. (2020). Origin of inter annual variability 
in global mean sea level. Proceedings of the National Academy of Sciences of the United States of America, 117(25), 13983–13990. https://
doi.org/10.1073/pnas.1922190117

Kramer, R. J., He, H., Soden, B. J., Oreopoulos, L., Myhre, G., Forster, P. M., & Smith, C. J. (2021). Observational evidence of increasing global 
radiative forcing. Geophysical Research Letters, 48(7). https://doi.org/10.1029/2020gl091585

Langbein, J. (2004). Noise in two-color electronic distance meter measurements revisited. Journal of Geophysical Research, 109(B4). https://
doi.org/10.1029/2003jb002819

Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L., & van den Broeke, M. R. (2016). Present-day and future Antarctic ice sheet 
climate and surface mass balance in the Community Earth System Model. Climate Dynamics, 47(5), 1367–1381. https://doi.org/10.1007/
s00382-015-2907-4

Little, C. M., Hu, A., Hughes, C. W., McCarthy, G. D., Piecuch, C. G., Ponte, R. M., & Thomas, M. D. (2019). The relationship between US East 
Coast Sea Level and the atlantic meridional overturning circulation: A review. Journal of Geophysical Research: Oceans, 124(9), 6435–6458. 
https://doi.org/10.1029/2019jc015152

Llovel, W., Becker, M., Cazenave, A., Jevrejeva, S., Alkama, R., Decharme, B., et al. (2011). Terrestrial waters and sea level variations on inter-
annual time scale. Global and Planetary Change, 75(1), 76–82. https://doi.org/10.1016/j.gloplacha.2010.10.008

Moore, J. C., Grinsted, A., Zwinger, T., & Jevrejeva, S. (2013). Semiempirical and process-based global sea level projections. Reviews of 
Geophysics, 51(3), 484–522. https://doi.org/10.1002/rog.20015

Moreira, L., Cazenave, A., & Palanisamy, H. (2021). Influence of inter annual variability in estimating the rate and acceleration of present-day 
global mean sea level. Global and Planetary Change, 199, 103450. https://doi.org/10.1016/j.gloplacha.2021.103450

Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change-driven accelerated 
sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America, 115(9), 2022–
2025. https://doi.org/10.1073/pnas.1717312115

Ngo-Duc, T., Laval, K., Polcher, J., Lombard, A., & Cazenave, A. (2005). Effects of land water storage on global mean sea level over the past half 
century. Geophysical Research Letters, 32(9). https://doi.org/10.1029/2005gl022719

Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J., & van den Broeke, M. R. (2021). A 21st century warming threshold for 
sustained Greenland ice sheet mass loss. Geophysical Research Letters, 48(5). https://doi.org/10.1029/2020gl090471

Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., et al. (2019). Sea level rise and implications 
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